Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 26(4): 101058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164890

RESUMO

PURPOSE: Rare disease genomic testing is a complex process involving various resources. Accurate resource estimation is required for informed prioritization and reimbursement decisions. This study aims to analyze the costs and cost drivers of clinical genomic testing. METHODS: Based on genomic sequencing workflows we microcosted limited virtual panel analysis on exome sequencing backbone, proband and trio exome, and genome testing for proband and trio analysis in 2023 Australian Dollars ($). Deterministic and probabilistic sensitivity analyses were undertaken. RESULTS: Panel testing costs AUD $2373 ($733-$6166), and exome sequencing costs $2823 ($802-$7206) and $5670 ($2006-$11,539) for proband and trio analysis, respectively. Genome sequencing costs $4840 ($2153-$9890) and $11,589 ($5842-$16,562) for proband and trio analysis. The most expensive cost component of genomic testing was sequencing (36.9%-69.4% of total cost), with labor accounting for 27.1%-63.2% of total cost. CONCLUSION: We provide a comprehensive analysis of rare disease genomic testing costs, for a range of clinical testing types and contexts. This information will accurately inform economic evaluations of rare disease genomic testing and decision making on policy settings that assist with implementation, such as genomic testing reimbursement.


Assuntos
Exoma , Doenças Raras , Humanos , Exoma/genética , Doenças Raras/diagnóstico , Doenças Raras/genética , Austrália , Genômica , Família
2.
Genet Med ; 26(5): 101076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258669

RESUMO

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Assuntos
Sequenciamento do Exoma , Exoma , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Exoma/genética , Sequenciamento do Exoma/economia , Estudos de Coortes , Testes Genéticos/economia , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/economia , Criança , Genoma Humano/genética , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Pré-Escolar
3.
BMC Genomics ; 24(1): 777, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102591

RESUMO

RNA-Seq analysis of Formalin-Fixed and Paraffin-Embedded (FFPE) samples has emerged as a highly effective approach and is increasingly being used in clinical research and drug development. However, the processing and storage of FFPE samples are known to cause extensive degradation of RNAs, which limits the discovery of gene expression or gene fusion-based biomarkers using RNA sequencing, particularly methods reliant on Poly(A) enrichment. Recently, researchers have developed an exome targeted RNA-Seq methodology that utilizes biotinylated oligonucleotide probes to enrich RNA transcripts of interest, which could overcome these limitations. Nevertheless, the standardization of this experimental framework, including probe designs, sample multiplexing, sequencing read length, and bioinformatic pipelines, remains an essential requirement. In this study, we conducted a comprehensive comparison of three main commercially available exome capture kits and evaluated key experimental parameters, to provide the overview of the advantages and limitations associated with the selection of library preparation protocols and sequencing platforms. The results provide valuable insights into the best practices for obtaining high-quality data from FFPE samples.


Assuntos
Exoma , Formaldeído , Perfilação da Expressão Gênica/métodos , Parafina , Inclusão em Parafina/métodos , RNA/genética , Análise de Sequência de RNA , Fixação de Tecidos/métodos
4.
Am J Hum Genet ; 110(9): 1454-1469, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37595579

RESUMO

Short-read genome sequencing (GS) holds the promise of becoming the primary diagnostic approach for the assessment of autism spectrum disorder (ASD) and fetal structural anomalies (FSAs). However, few studies have comprehensively evaluated its performance against current standard-of-care diagnostic tests: karyotype, chromosomal microarray (CMA), and exome sequencing (ES). To assess the clinical utility of GS, we compared its diagnostic yield against these three tests in 1,612 quartet families including an individual with ASD and in 295 prenatal families. Our GS analytic framework identified a diagnostic variant in 7.8% of ASD probands, almost 2-fold more than CMA (4.3%) and 3-fold more than ES (2.7%). However, when we systematically captured copy-number variants (CNVs) from the exome data, the diagnostic yield of ES (7.4%) was brought much closer to, but did not surpass, GS. Similarly, we estimated that GS could achieve an overall diagnostic yield of 46.1% in unselected FSAs, representing a 17.2% increased yield over karyotype, 14.1% over CMA, and 4.1% over ES with CNV calling or 36.1% increase without CNV discovery. Overall, GS provided an added diagnostic yield of 0.4% and 0.8% beyond the combination of all three standard-of-care tests in ASD and FSAs, respectively. This corresponded to nine GS unique diagnostic variants, including sequence variants in exons not captured by ES, structural variants (SVs) inaccessible to existing standard-of-care tests, and SVs where the resolution of GS changed variant classification. Overall, this large-scale evaluation demonstrated that GS significantly outperforms each individual standard-of-care test while also outperforming the combination of all three tests, thus warranting consideration as the first-tier diagnostic approach for the assessment of ASD and FSAs.


Assuntos
Transtorno do Espectro Autista , Feminino , Gravidez , Humanos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Primeiro Trimestre da Gravidez , Ultrassonografia Pré-Natal , Mapeamento Cromossômico , Exoma
5.
J Hum Genet ; 68(12): 797-804, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37524782

RESUMO

Neurogenetic diseases are rare genetic diseases in which neurological findings are prominent. Whole exome sequencing (WES) has led to great advances in the understanding of the causes of neurogenetic diseases. Etiological research ends with the WES method in many patients. This etiological research is called a "diagnostic odyssey" for many families. Here, we present the results of 168 patients who were previously undiagnosed and underwent WES with the suspicion of neurogenetic disease. A total of 168 cases, 94 males and 74 females, with suspected undiagnosed neurogenetic disease were included in the study. We presented the WES results of the patients. The mean age of patients at the time of WES request was 11 years (range 0.25-68 years). Seventy percent (n = 117) of the patients were born from consanguineous marriage. Most of the patients were children (n = 145). Patients were grouped according to age at the time of examination. Patients younger than 18 years of age at the time of examination were classified as children, otherwise adults. Seventy-eight patients had either a pathogenic variant or a likely pathogenic variant so the diagnostic rate for WES in our cohort was %46. Our experience showing the high diagnostic rate of WES, supports its use in undiagnosed neurogenetic diseases. It also affects medical treatment, prognosis and family planning by enabling early diagnosis in patients.


Assuntos
Exoma , Doenças não Diagnosticadas , Criança , Masculino , Adulto , Feminino , Humanos , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Sequenciamento do Exoma , Exoma/genética , Doenças Raras/genética , Doenças não Diagnosticadas/genética , Diagnóstico Precoce , Testes Genéticos/métodos
6.
Eur J Hum Genet ; 31(10): 1154-1164, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460657

RESUMO

Iterative re-analysis of NGS results is not well investigated for published research cohorts of rare diseases. We revisited a cohort of 152 consanguineous families with developmental disorders (NDD) reported five years ago. We re-evaluated all reported variants according to diagnostic classification guidelines or our candidate gene scoring system (AutoCaSc) and systematically scored the validity of gene-disease associations (GDA). Sequencing data was re-processed using an up-to-date pipeline for case-level re-analysis. In 28/152 (18%) families, we identified a clinically relevant change. Ten previously reported (likely) pathogenic variants were re-classified as VUS/benign. In one case, the GDA (TSEN15) validity was judged as limited, and in five cases GDAs are meanwhile established. We identified 12 new disease causing variants. Two previously reported variants were missed by our updated pipeline due to alignment or reference issues. Our results support the need to re-evaluate screening studies, not only the negative cases but including supposedly solved ones. This also applies in a diagnostic setting. We highlight that the complexity of computational re-analysis for old data should be weighed against the decreasing re-testing costs. Since extensive re-analysis per case is beyond the resources of most institutions, we recommend a screening procedure that would quickly identify the majority (83%) of new variants.


Assuntos
Endonucleases , Exoma , Humanos , Consanguinidade , Custos e Análise de Custo , Endonucleases/genética
7.
PLoS One ; 18(4): e0271354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37022995

RESUMO

Tumors rich in stroma are associated with advanced stage and poor prognosis in colorectal adenocarcinoma (CRC). Abundance of stromal cells also has implications for genomic analysis of patient tumors as it may prevent detection of somatic mutations. As part of our efforts to interrogate stroma-cancer cell interactions and to identify actionable therapeutic targets in metastatic CRC, we aimed to determine the proportion of stroma embedded in hepatic CRC metastases by performing computational tumor purity analysis based on whole exome sequencing data (WES). Unlike previous studies focusing on histopathologically prescreened samples, we used an unbiased in-house collection of tumor specimens. WES from CRC liver metastasis samples were utilized to evaluate stromal content and to assess the performance of three in silico tumor purity tools, ABSOLUTE, Sequenza and PureCN. Matching tumor derived organoids were analyzed as a high purity control as they are enriched in cancer cells. Computational purity estimates were compared to those from a histopathological assessment conducted by a board-certified pathologist. According to all computational methods, metastatic specimens had a median tumor purity of 30% whereas the organoids were enriched for cancer cells with a median purity estimate of 94%. In line with this, variant allele frequencies (VAFs) of oncogenes and tumor suppressor genes were undetectable or low in most patient tumors, but higher in matching organoid cultures. Positive correlation was observed between VAFs and in silico tumor purity estimates. Sequenza and PureCN produced concordant results whereas ABSOLUTE yielded lower purity estimates for all samples. Our data shows that unbiased sample selection combined with molecular, computational, and histopathological tumor purity assessment is critical to determine the level of stroma embedded in metastatic colorectal adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Sequenciamento do Exoma , Mutação , Exoma/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Adenocarcinoma/genética , Neoplasias Hepáticas/genética
8.
BMC Health Serv Res ; 23(1): 386, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085862

RESUMO

BACKGROUND: With the development of next generation sequencing technologies in France, exome sequencing (ES) has recently emerged as an opportunity to improve the diagnosis rate of patients presenting an intellectual disability (ID). To help French policy makers determine an adequate tariff for ES, we aimed to assess the unit cost per ES diagnostic test for ID from the preparation of the pre-analytical step until the report writing step and to identify its main cost drivers. METHODS: A micro-costing bottom-up approach was conducted for the year 2018 in a French setting as part of the DISSEQ study, a cost-effectiveness study funded by the Ministry of Health and performed in collaboration with the GAD (Génétique des Anomalies du Développement), a genetic team from the Dijon University Hospital, and a public sequencing platform, the Centre National de Recherche en Génomique Humaine (CNRGH). The analysis was conducted from the point of view of these two ES stakeholders. All of the resources (labor, equipment, disposables and reagents, reusable material) required to analyze blood samples were identified, collected and valued. Several sensitivity analyses were performed. RESULTS: The unit nominal cost per ES diagnostic test for ID was estimated to be €2,019.39. Labor represented 50.7% of the total cost. The analytical step (from the preparation of libraries to the analysis of sequences) represented 88% of the total cost. Sensitivity analyses suggested that a simultaneous price decrease of 20% for the capture kit and 50% for the sequencing support kit led to an estimation of €1,769 per ES diagnostic test for ID. CONCLUSION: This is the first estimation of ES cost to be done in the French setting of ID diagnosis. The estimation is especially influenced by the price of equipment kits, but more generally by the organization of the centers involved in the different steps of the analysis and the time period in which the study was conducted. This information can now be used to define an adequate tariff and assess the efficiency of ES. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT03287206 on September 19, 2017.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Exoma , França
9.
Am J Med Genet A ; 191(6): 1546-1556, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942736

RESUMO

The etiology of biliary atresia (BA) is unknown, but recent studies suggest a role for rare protein-altering variants (PAVs). Exome sequencing data from the National Birth Defects Prevention Study on 54 child-parent trios, one child-mother duo, and 1513 parents of children with other birth defects were analyzed. Most (91%) cases were isolated BA. We performed (1) a trio-based analysis to identify rare de novo, homozygous, and compound heterozygous PAVs and (2) a case-control analysis using a sequence kernel-based association test to identify genes enriched with rare PAVs. While we replicated previous findings on PKD1L1, our results do not suggest that recurrent de novo PAVs play important roles in BA susceptibility. In fact, our finding in NOTCH2, a disease gene associated with Alagille syndrome, highlights the difficulty in BA diagnosis. Notably, IFRD2 has been implicated in other gastrointestinal conditions and warrants additional study. Overall, our findings strengthen the hypothesis that the etiology of BA is complex.


Assuntos
Atresia Biliar , Humanos , Atresia Biliar/epidemiologia , Atresia Biliar/genética , Atresia Biliar/diagnóstico , Exoma/genética , Homozigoto , Pais , Estudos de Casos e Controles , Proteínas de Membrana/genética
10.
Expert Rev Mol Diagn ; 23(1): 85-103, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36714946

RESUMO

OBJECTIVES: Genetics of epilepsy are highly heterogeneous and complex. Lesions detected involve genes encoding various types of channels, transcription factors, and other proteins implicated in numerous cellular processes, such as synaptogenesis. Consequently, a wide spectrum of clinical presentations and overlapping phenotypes hinders differential diagnosis and highlights the need for molecular investigations toward delineation of underlying mechanisms and final diagnosis. Characterization of defects may also contribute valuable data on genetic landscapes and networks implicated in epileptogenesis. METHODS: This study reports on genetic findings from exome sequencing (ES) data of 107 patients with variable types of seizures, with or without additional symptoms, in the context of neurodevelopmental disorders. RESULTS: Multidisciplinary evaluation of ES, including ancillary detection of copy number variants (CNVs) with the ExomeDepth tool, supported a definite diagnosis in 59.8% of the patients, reflecting one of the highest diagnostic yields in epilepsy. CONCLUSION: Emerging advances of next-generation technologies and 'in silico' analysis tools offer the possibility to simultaneously detect several types of variations. Wide assessment of variable findings, specifically those found to be novel and least expected, reflects the ever-evolving genetic landscape of seizure development, potentially beneficial for increased opportunities for trial recruitment and enrollment, and optimized, even personalized, medical management.


Assuntos
Epilepsia , Exoma , Humanos , Exoma/genética , Epilepsia/diagnóstico , Epilepsia/genética , Fenótipo , Variações do Número de Cópias de DNA , Genômica
11.
Genet Med ; 25(1): 16-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305854

RESUMO

PURPOSE: This study aimed to explore whether evidence of pathogenicity from prior variant classifications in ClinVar could be used to inform variant interpretation using the American College of Medical Genetics and Genomics/Association for Molecular Pathology clinical guidelines. METHODS: We identified distinct single-nucleotide variants (SNVs) that are either similar in location or in functional consequence to pathogenic variants in ClinVar and analyzed evidence in support of pathogenicity using 3 interpretation criteria. RESULTS: Thousands of variants, including many in clinically actionable disease genes (American College of Medical Genetics and Genomics secondary findings v3.0), have evidence of pathogenicity from existing variant classifications, accounting for 2.5% of nonsynonymous SNVs within ClinVar. Notably, there are many variants with uncertain or conflicting classifications that cause the same amino acid substitution as other pathogenic variants (PS1, N = 323), variants that are predicted to cause different amino acid substitutions in the same codon as pathogenic variants (PM5, N = 7692), and loss-of-function variants that are present in genes in which many loss-of-function variants are classified as pathogenic (PVS1, N = 3635). Most of these variants have similar computational predictions of pathogenicity and splicing effect as their associated pathogenic variants. CONCLUSION: Broadly, for >1.4 million SNVs exome wide, information from previously classified variants could be used to provide evidence of pathogenicity. We have developed a pipeline to identify variants meeting these criteria that may inform interpretation efforts.


Assuntos
Testes Genéticos , Genômica , Humanos , Exoma , Splicing de RNA , Patologia Molecular , Variação Genética/genética
12.
Genes (Basel) ; 13(12)2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36553485

RESUMO

Neurological phenotypes such as intellectual disability occur in almost half of patients with neurofibromatosis 1 (NF1). Current genotype-phenotype studies have failed to reveal the mechanism underlying this clinical variability. Despite the presence of pathogenic variants of NF1, modifier genes likely determine the occurrence and severity of neurological phenotypes. Exome sequencing data were used to identify genetic variants in 13 NF1 patients and 457 healthy controls, and this information was used to identify candidate modifier genes underlying neurological phenotypes based on an optimal sequence kernel association test. Thirty-six genes were identified as significant modifying factors in patients with neurological phenotypes and all are highly expressed in the nervous system. A review of the literature confirmed that 19 genes including CUL7, DPH1, and BCO1 are clearly associated with the alteration of neurological functioning and development. Our study revealed the enrichment of rare variants of 19 genes closely related to neurological development and functioning in NF1 patients with neurological phenotypes, indicating possible modifier genes and variants affecting neurodevelopment. Further studies on rare genetic variants of candidate modifier genes may help explain the clinical heterogeneity of NF1.


Assuntos
Neurofibromatose 1 , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Genes Modificadores , Fenótipo , Exoma , Sequenciamento do Exoma
13.
BMC Med ; 20(1): 332, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36199081

RESUMO

BACKGROUND: Up to one of every six individuals diagnosed with one cancer will be diagnosed with a second primary cancer in their lifetime. Genetic factors contributing to the development of multiple primary cancers, beyond known cancer syndromes, have been underexplored. METHODS: To characterize genetic susceptibility to multiple cancers, we conducted a pan-cancer, whole-exome sequencing study of individuals drawn from two large multi-ancestry populations (6429 cases, 165,853 controls). We created two groupings of individuals diagnosed with multiple primary cancers: (1) an overall combined set with at least two cancers across any of 36 organ sites and (2) cancer-specific sets defined by an index cancer at one of 16 organ sites with at least 50 cases from each study population. We then investigated whether variants identified from exome sequencing were associated with these sets of multiple cancer cases in comparison to individuals with one and, separately, no cancers. RESULTS: We identified 22 variant-phenotype associations, 10 of which have not been previously discovered and were significantly overrepresented among individuals with multiple cancers, compared to those with a single cancer. CONCLUSIONS: Overall, we describe variants and genes that may play a fundamental role in the development of multiple primary cancers and improve our understanding of shared mechanisms underlying carcinogenesis.


Assuntos
Predisposição Genética para Doença , Neoplasias Primárias Múltiplas , Exoma/genética , Predisposição Genética para Doença/genética , Humanos , Neoplasias Primárias Múltiplas/genética , Fenótipo , Sequenciamento do Exoma
15.
Genet Med ; 24(10): 2028-2033, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35951015

RESUMO

PURPOSE: Exome sequencing (ES) is becoming increasingly important for diagnosing rare genetic disorders. Patients and clinicians face several barriers when attempting to obtain ES. This study is aimed to describe factors associated with a longer time interval between provider recommendation of testing and sample collection for ES. METHODS: A retrospective chart review was conducted for insurance-authorized, completed pediatric ES in which initial requests were reviewed by Stanford's Genetic Testing Optimization Service between November 2018 and December 2019. Regression analysis was used to determine the association between the geocoded median household income and 3 different time point intervals defined as time to test, insurance decision, and scheduling/consent. RESULTS: Of the 281 charts reviewed, 115 cases were included in the final cohort. The average time from provider preauthorization request to sample collection took 104.4 days, and income was negatively correlated with the length of the insurance decision interval. CONCLUSION: Pediatric patients undergo a lengthy, uncertain process when attempting to obtain ES, some of which is associated with income. More research and clinician interventions are required to clarify specific socioeconomic factors that influence the ability to obtain timely ES and develop optimal protocols.


Assuntos
Exoma , Testes Genéticos , Criança , Exoma/genética , Humanos , Estudos Retrospectivos , Fatores Socioeconômicos , Sequenciamento do Exoma/métodos
16.
Eur J Hum Genet ; 30(10): 1121-1131, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970915

RESUMO

Whole genome sequencing (WGS) improves Mendelian disorder diagnosis over whole exome sequencing (WES); however, additional diagnostic yields and costs remain undefined. We investigated differences between diagnostic and cost outcomes of WGS and WES in a cohort with suspected Mendelian disorders. WGS was performed in 38 WES-negative families derived from a 64 family Mendelian cohort that previously underwent WES. For new WGS diagnoses, contemporary WES reanalysis determined whether variants were diagnosable by original WES or unique to WGS. Diagnostic rates were estimated for WES and WGS to simulate outcomes if both had been applied to the 64 families. Diagnostic costs were calculated for various genomic testing scenarios. WGS diagnosed 34% (13/38) of WES-negative families. However, contemporary WES reanalysis on average 2 years later would have diagnosed 18% (7/38 families) resulting in a WGS-specific diagnostic yield of 19% (6/31 remaining families). In WES-negative families, the incremental cost per additional diagnosis using WGS following WES reanalysis was AU$36,710 (£19,407;US$23,727) and WGS alone was AU$41,916 (£22,159;US$27,093) compared to WES-reanalysis. When we simulated the use of WGS alone as an initial genomic test, the incremental cost for each additional diagnosis was AU$29,708 (£15,705;US$19,201) whereas contemporary WES followed by WGS was AU$36,710 (£19,407;US$23,727) compared to contemporary WES. Our findings confirm that WGS is the optimal genomic test choice for maximal diagnosis in Mendelian disorders. However, accepting a small reduction in diagnostic yield, WES with subsequent reanalysis confers the lowest costs. Whether WES or WGS is utilised will depend on clinical scenario and local resourcing and availability.


Assuntos
Exoma , Sequência de Bases , Mapeamento Cromossômico , Humanos , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
17.
Genet Med ; 24(10): 2014-2027, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35833928

RESUMO

PURPOSE: Methodological challenges have limited economic evaluations of genome sequencing (GS) and exome sequencing (ES). Our objective was to develop conceptual frameworks for model-based cost-effectiveness analyses (CEAs) of diagnostic GS/ES. METHODS: We conducted a scoping review of economic analyses to develop and iterate with experts a set of conceptual CEA frameworks for GS/ES for prenatal testing, early diagnosis in pediatrics, diagnosis of delayed-onset disorders in pediatrics, genetic testing in cancer, screening of newborns, and general population screening. RESULTS: Reflecting on 57 studies meeting inclusion criteria, we recommend the following considerations for each clinical scenario. For prenatal testing, performing comparative analyses of costs of ES strategies and postpartum care, as well as genetic diagnoses and pregnancy outcomes. For early diagnosis in pediatrics, modeling quality-adjusted life years (QALYs) and costs over ≥20 years for rapid turnaround GS/ES. For hereditary cancer syndrome testing, modeling cumulative costs and QALYs for the individual tested and first/second/third-degree relatives. For tumor profiling, not restricting to treatment uptake or response and including QALYs and costs of downstream outcomes. For screening, modeling lifetime costs and QALYs and considering consequences of low penetrance and GS/ES reanalysis. CONCLUSION: Our frameworks can guide the design of model-based CEAs and ultimately foster robust evidence for the economic value of GS/ES.


Assuntos
Exoma , Testes Genéticos , Criança , Análise Custo-Benefício , Exoma/genética , Feminino , Testes Genéticos/métodos , Humanos , Recém-Nascido , Gravidez , Anos de Vida Ajustados por Qualidade de Vida , Sequenciamento do Exoma/métodos
18.
Ann Clin Transl Neurol ; 9(7): 1050-1058, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35678011

RESUMO

OBJECTIVE: Microdeletions are associated with different forms of epilepsy but show incomplete penetrance, which is not well understood. We aimed to assess whether unmasked variants or double CNVs could explain incomplete penetrance. METHODS: We analyzed copy number variants (CNVs) in 603 patients with four different subgroups of epilepsy and 945 controls. CNVs were called from genotypes and validated on whole-genome (WGS) or whole-exome sequences (WES). CNV burden difference between patients and controls was obtained by fitting a logistic regression. CNV burden was assessed for small and large (>1 Mb) deletions and duplications and for deletions overlapping different gene sets. RESULTS: Large deletions were enriched in genetic generalized epilepsies (GGE) compared to controls. We also found enrichment of deletions in epilepsy genes and hotspots for GGE. We did not find truncating or functional variants that could have been unmasked by the deletions. We observed a double CNV hit in two patients. One patient also carried a de novo deletion in the 22q11.2 hotspot. INTERPRETATION: We could corroborate previous findings of an enrichment of large microdeletions and deletions in epilepsy genes in GGE. We could also replicate that microdeletions show incomplete penetrance. However, we could not validate the hypothesis of unmasked variants nor the hypothesis of double CNVs to explain the incomplete penetrance. We found a de novo CNV on 22q11.2 that could be of interest. We also observed GGE families carrying a deletion on 15q13.3 hotspot that could be investigated in the Quebec founder population.


Assuntos
Epilepsia Generalizada , Epilepsia , Variações do Número de Cópias de DNA/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Exoma , Humanos , Sequenciamento do Exoma
19.
Ultrasound Obstet Gynecol ; 60(6): 780-792, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35726512

RESUMO

OBJECTIVE: To evaluate the utility of trio-based prenatal exome sequencing (pES), incorporating splice-site and mitochondrial genome assessment, in the prenatal diagnosis of fetuses with ultrasound anomalies and normal copy-number variant sequencing (CNV-seq) results. METHODS: This was a prospective study of 90 ongoing pregnancies with ultrasound anomalies that underwent trio-based pES after receiving normal CNV-seq results, from September 2020 to November 2021, in a single center in China. By using pES with a panel encompassing exome coding and splicing regions as well as mitochondrial genome for fetuses and parents, we identified the underlying genetic causes of fetal anomalies, incidental fetal findings and parental carrier status. Information on pregnancy outcome and the impact of pES findings on parental decision-making was collected. RESULTS: Of the 90 pregnancies included, 28 (31.1%) received a diagnostic result that could explain the fetal ultrasound anomalies. The highest diagnostic yield was noted for brain abnormalities (3/6 (50.0%)), followed by hydrops (4/9 (44.4%)) and skeletal abnormalities (13/34 (38.2%)). Collectively, 34 variants of 20 genes were detected in the 28 diagnosed cases, with 55.9% (19/34) occurring de novo. Variants of uncertain significance (VUS) associated with fetal phenotypes were detected in six (6.7%) fetuses. Interestingly, fetal (n = 4) and parental (n = 3) incidental findings (IFs) were detected in seven (7.8%) cases. These included two fetuses carrying a de-novo likely pathogenic (LP) variant of the CIC and FBXO11 genes, respectively, associated with neurodevelopmental disorders, and one fetus with a LP variant in a mitochondrial gene. The remaining fetus presented with unilateral renal dysplasia and was incidentally found to carry a pathogenic PKD1 gene variant resulting in adult-onset polycystic kidney, which was later confirmed to be inherited from the mother. In addition, parental heterozygous variants associated with autosomal recessive diseases were detected in three families, including one with additional fetal diagnostic findings. Diagnostic results or fetal IFs contributed to parental decision-making about termination of the pregnancy in 26 families (26/72 (36.1%)), while negative pES results or identification of VUS encouraged 40 families (40/72 (55.6%)) to continue their pregnancy, which ended in a live birth in all cases. CONCLUSION: Trio-based pES can provide additional genetic information for pregnancies with fetal ultrasound anomalies without a CNV-seq diagnosis. The incidental findings and parental carrier status reported by trio-based pES with splice-site and mitochondrial genome analysis extend its clinical application, but careful genetic counseling is warranted. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Proteínas F-Box , Genoma Mitocondrial , Feminino , Gravidez , Humanos , Estudos Prospectivos , Exoma , Sequenciamento do Exoma/métodos , Ultrassonografia Pré-Natal , Proteína-Arginina N-Metiltransferases/genética , Proteínas F-Box/genética
20.
Genet Med ; 24(6): 1349-1361, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35396982

RESUMO

PURPOSE: This study aimed to estimate the cost-effectiveness of exome sequencing (ES) and genome sequencing (GS) for children. METHODS: We modeled costs, diagnoses, and quality-adjusted life years (QALYs) for diagnostic strategies for critically ill infants (aged <1 year) and children (aged <18 years) with suspected genetic conditions: (1) standard of care (SOC) testing, (2) ES, (3) GS, (4) SOC followed by ES, (5) SOC followed by GS, (6) ES followed by GS, and (7) SOC followed by ES followed by GS. We calculated the 10-year incremental cost per additional diagnosis, and lifetime incremental cost per QALY gained, from a health care perspective. RESULTS: First-line GS costs $15,048 per diagnosis vs SOC for infants and $27,349 per diagnosis for children. If GS is unavailable, ES represents the next most efficient option compared with SOC ($15,543 per diagnosis for infants and $28,822 per diagnosis for children). Other strategies provided the same or fewer diagnoses at a higher incremental cost per diagnosis. Lifetime results depend on the patient's assumed long-term prognosis after diagnosis. For infants, GS ranged from cost-saving (vs all alternatives) to $18,877 per QALY (vs SOC). For children, GS (vs SOC) ranged from $119,705 to $490,047 per QALY. CONCLUSION: First-line GS may be the most cost-effective strategy for diagnosing infants with suspected genetic conditions. For all children, GS may be cost-effective under certain assumptions. ES is nearly as efficient as GS and hence is a viable option when GS is unavailable.


Assuntos
Exoma , Criança , Mapeamento Cromossômico , Análise Custo-Benefício , Exoma/genética , Humanos , Lactente , Anos de Vida Ajustados por Qualidade de Vida , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA